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In a previous paper,        the mean equivalent width derivative functions 

y(x,p) for bands of randomly arranged Lorentz or Doppler lines with a con- 

stant or exponential distribution of line strengths were derived and tabulated. 

Hero,  an extension to the exponential-tailed inverse line strength distribution 

of Malkmus       is made.    Familiarity on the reader's part with the contents ot 

Ref.   1  is assumed. 

The exponential-tailed inverse distribution is an approximation to the 

purely inverse distribution but is more mathematically convenient to use than 

the latter,  at least when employed in conjunction with the Lorentz line shape. 

According to this distvibution, the probability that a line in Av has strength S 

(0 < S< ») in dS is 

^  ^nr H - 4 Hxp (" f) dS ,1 

whrre S      ■s thi- maximum line- strength cut-off and S.JR iho mimmum cut-ofi 
M 

that would apply to the purely inverse distribution.    The mean line strength lor 

the distribution is 

b   "   Rln R   SM- (2) 

Thi approximation to the inverse distribution results as R^»,    in applica- 

tion.   P(S) in the form of Eq.   (1) is used to compute the desired i . suit  in 

terms of R.  and then the limit R .- is taken.    In most cases,  the functional 

form of the result  is independent of R. 
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The fquivalont width for an array of Lorentz lines with this ■tretlfth 

distribution has thf simple form 

W 

— " PL f(x) 

whrrt- 

f(x)   ■    JT* 2x 

For an array of Doppler lines,  the result ii 

(4) 

W 
I) 

I" ^ PDH(X) 

win' re 

H(x) ■=    J    In (1  + x exp (-z2)j  dz. (6) 

The curv« of growth function H(x) has been conside-ed by Malknius,,3) who 

has given a series solution for small x and an aiymptotic expansion for 

large x. 

The equivalent width derivative function y(x,p) for an array of 

Lorentz linos and in the  Lindquist-Simmons approximation is obfaim d 

by using  P(81 of Eq.   (1) with Eqs.   (14) and (18) of Ref.   1.     The  result 

is 

•    /   f(p   +l) + (p   -DcosG]  fl+ax(l + co89)Hl +bx(l + coS9)l (') 

11 in ■■r ii >■■ ■       h^M^^MHft^B^ 
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where   a ■ R/(NAR + 1)    and b ■ a/R.    The limit R -» yields 

i£ d9 
11      J 1(P2  +M   +   (P2-   l)C08e)[  1   +X(1   +C089)) 

0 

18) 

This  result is very similar in form to that obtained in Ref.   1 for the ex- 

ponential distribution.    The only difference is that the exponer.t on the 

function 1   + xd  + cosO) in the denominator has been reduced from 2 to  1 

and is clearly a result of the S"    factor in the distribution function.   This 

reduction in power is significant since now,  when the transformation to 

the complex z plane by z = e      is made in order to perform the integration 

of Eq.   (8) by the method of residues, the order of the poles at z, and z. 
J 4 

[Eqs.   (27c) and {27d) of Ref.   1 ] is also reduced from 2 to 1.    A straight- 

forward evaluation of the residues yields the relatively simple expression 

y(x'p)" ÄTB lPVJi+2xl2—• 

For a homogeneous path (p ■ 1),   Eq.   (9) reduces to y(x, i) ■ (1 +2x)'1/2, 

which is df(x)/dx as required.    Curves of y(x,p) vs x for several values 

of p according to Eq.  (9) and according to the Curtis-Godson expression 

1^ 

y(x,p) -- (2- p) df(x) 
dx 

+ (p- 1) f(x) 
(10) 

are shown in  Fig.   1.    The discussion of these curves is similar to that 

given for the constant and exponential distribution curves in Rcf.   1.    The 

simplicity in form of the result of Eq.   (9) over the results for the constant 

-5 

-- - - - -  ——  ^.     - ■   --       ■-— --—'—~*- 



f^w^mm^m 

100 

IG 

10: 

rfll 

001 

MT 

1—T~r-| 1 1—TT 1 ! 1 r-T-|- I I    <   I | 1 r 

=0.01-   ^ 

,3=10 

10  L    t     i- i id L—J—i i I 1 i i i I i i   ■ ■ I     i     iii 
0.01 01 1.0 10 100 loon 

(a) 

10 

10 

01 

i 1—r—r-i ! T—r-r-i 1 1—I—TT ! r 

OJOI: 

10 

IfJ 
001 

11 "^r 

j i i_i. 

^ = 100 

(b) 
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and exponential cases is enhanced by the fact that an inverse distribution 

is a more realistic representation for many molecular species than either 

of the other two. 

When Eqs,   (16) and (18) of Ref.   I  are used along with P{S) of Eq.   1, 

the derivative function for an array of Doppler lines in the Lindquist-Simmons 

approximation is found to bt- (after R-»») 

y(x,p)   ■ 
>/ (1 +x exp (-p2z2)l 

dz. (in 

Again,  this result is similar to that obtained for an exponential distribution 

of Doppler lines in Ref.   1.    The only change is a reduction in the power of 

the denominator from 2 to 1.    Note that y(x,l) ■ dH(x)/c'jc as required for 

a homogeneous path.    A series representation for x <  1  is 

n=0  v/l + npz 
(12) 

and a useful approximation (^   0.8%) for p ^ 0. 5 is 

y(x,p) - 
y/l + x [ 1 -x(p2- 1)]1/2  ' 

(13) 

The rrost useful representation of y(x,p) is a table of values for a wide 

range oi" x and p.    The entries of Table 1 were computed by a numerical 

integration of Eq.   (11) in a manner similar to that of Ref.   1  except that 
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a Gaussian quatlralure formula was used in place of the Wodle formula. 

The values are accurate to  1 part in  10   .    Curves of y(x,p) according to 

the Lindquist-Simmons  result ( Eq.   (11)]  and the Curtis-Godson expression 

y(x.p) . (2.p)5|5U(p.t)iaÖ (14) 

are displa/ed in Fig.   2. 

For both the Lorentz and Doppler ca8>.s,  the tra.— ition from the small 

x to the large x behavior of y(x,p) is more gradual for the modified inverse 

distribution than for the exponential distribution (compare Fig.   1 of this 

paper with Fig.   2 of Ref.   1 for the Lorentz case and Fig.   2 of this paper 

with Fig.  4 of Ref.   1  for the  Doppler case).    This effect is due to the greater 

weight placed on weak lines by the inverse distribution than by the expo- 

nential distribution. 
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